power

Mayonnaise Could Help Improve Fusion Energy Yields – Slashdot

Mayonnaise Could Help Improve Fusion Energy Yields (arstechnica.com)

Posted by BeauHD from the what-will-they-think-of-next dept.

An anonymous reader quotes a report from Ars Technica: Inertial confinement fusion is one method for generating energy through nuclear fusion, albeit one plagued by all manner of scientific challenges (although progress is being made). Researchers at LeHigh University are attempting to overcome one specific bugbear with this approach by conducting experiments with mayonnaise placed in a rotating figure-eight contraption. They described their most recent findings in a new paper published in the journal Physical Review E with an eye toward increasing energy yields from fusion.

The work builds on prior research in the LeHigh laboratory of mechanical engineer Arindam Banerjee, who focuses on investigating the dynamics of fluids and other materials in response to extremely high acceleration and centrifugal force. In this case, his team was exploring what’s known as the “instability threshold” of elastic/plastic materials. Scientists have debated whether this comes about because of initial conditions, or whether it’s the result of “more local catastrophic processes,” according to Banerjee. The question is relevant to a variety of fields, including geophysics, astrophysics, explosive welding, and yes, inertial confinement fusion. […]

The problem is that hydrodynamic instabilities tend to form in the plasma state — Banerjee likens it to “two materials [that] penetrate one another like fingers” in the presence of gravity or any accelerating field — which in turn reduces energy yields. The technical term is a Rayleigh-Taylor instability, which occurs between two materials of different densities, where the density and pressure gradients move in opposite directions. Mayonnaise turns out to be an excellent analog for investigating this instability in accelerated solids, with no need for a lab setup with high temperature and pressure conditions, because it’s a non-Newtonian fluid. “We use mayonnaise because it behaves like a solid, but when subjected to a pressure gradient, it starts to flow,” said Banerjee. “As with a traditional molten metal, if you put a stress on mayonnaise, it will start to deform, but if you remove the stress, it goes back to its original shape. So there’s an elastic phase followed by a stable plastic phase. The next phase is when it starts flowing, and that’s where the instability kicks in.”

In 2019, Banerjee’s team conducted experiments that “involved pouring Hellman’s Real Mayonnaise […] into a Plexiglass container and then creating wavelike perturbations in the mayo,” writes Ars’ Jennifer Ouellette. “One experiment involved placing the container on a rotating wheel in the shape of a figure eight and tracking the material with a high-speed camera, using an image processing algorithm to analyze the footage. Their results supported the claim that the instability threshold is dependent on initial conditions, namely amplitude and wavelength.”

“This latest paper sheds more light on the structural integrity of fusion capsules used in inertial confinement fusion, taking a closer look at the material properties, the amplitude and wavelength conditions, and the acceleration rate of such materials as they hit the Rayleigh-Taylor instability threshold.”

Somebody’s terminal is dropping bits. I found a pile of them over in the corner.

Working…

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Back to top button

Adblock Detected

Block the adblockers from browsing the site, till they turn off the Ad Blocker.